为什么雨滴落下不会砸死人?《张朝阳的物理课》推导斯托克斯定律
这个等式的右边看起来还是二阶导,但与(1)式不同的是,这里的nabla算子▽是依次以叉乘的形式作用在后面的矢量上的,而(1)式是两个nabla算子以点乘成拉普拉斯算子的形式作用到速度矢量上,前者的两次求导操作是容易拆分的,后者要拆分的话比较困难,需要先作用一次导出二阶张量再求散度来缩并回一阶矢量。受到(4)式的启...
深度学习揭秘系列之一:基于量价与基本面结合的深度学习选股策略
我们可以推导出其梯度为σ'(x)=σ(x)(1-σ(x)),导数最大值为0.25,当x→±∞时,σ'→0。Tanh函数:Tanh函数多用于模型隐藏层,可看作可看作σ(x)的变换:tanh(x)=2σ(2x)-1,其值域为(-1,1),导数最大值为1,当x→±∞时,tanh'→0。ReLU函数:ReLU函数是近年来普遍应用的激活函数,当x>0...
轻松、有趣的掌握梯度下降!
向量??f(x0,y0…)将识别出使f函数值增加的最快行进方向。有趣的是,梯度矢量??f(x0,yo…)也垂直于函数f的轮廓线!假设偏导数是具有n个偏导数的n次导数,这些偏导数可以将每个单独的变量与其他看作常数的变量隔离开来。而梯度将每个偏导数组合成一个向量。3、学习率梯度可以确定移动的方向。...
a的x次方求导
a的x次方导数是(a^x)'=(lna)(a^x)。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。1a的x次方求导(a^x)'=(lna)(a^x)求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y'/y=lna所以y'=ylna=a^xlna,得证对于可导的函数f(x),...
Inx加根号下1加x平方的导数
令t=x??+1对√t求导为1/(2√t)再乘以x??+1的导数2x所以最后答案是x/(√x??+1)。1、根号,数学符号,用来表示对一个数或一个代数式进行开方运算的符号,用“√”表示,被开方的数或代数式写在符号包围的区域中,不能出界。若a=b,那么a是b开n次方的n次方根或a是b的1/n次方。2、像a...
不定积分的求法-不定积分常用方法小结
设f(u)f(u)有原函数,u=φ(x)u=\varphi(x)可导,则有∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x)\int_{}^{}f[\varphi(x)]\varphi^{}(x)dx=[\int_{}^{}f(u)du]_{u=\varphi(x)},第一类换元法主要技巧在于凑微分,不仅要熟悉常见函数的导数,还要很强的观察能力(www.e993.com)2024年11月12日。
数学39种快速做题方法,你离学霸只差这份“计算秘籍”
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。4.函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;(3)奇偶性作用不大,一般用于选择填空。5.数列爆强定律...
20考研数学:求极限的16个方法
必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要...
y=lnx+x+1的一条切线斜率为2求切线法线方程及函数性质
y=lnx+x+1,方程两边同时求导得:dy/dx=(lnx)'+(x)'+0=1/x+1,根据题意有:1/x+1=2,即x=1,代入函数方程计算得y=ln1+1+1=2,由切线的点斜式计算得:y-2=2(x-1),此时切线的方程为y-2x=0。※.法线计算由于该点的切线的斜率为k1=2,则该点处法线的斜率k2为:...
从小提琴中振动出的波动方程,成了支撑现代科技的基础理论之一
如果函数u只依赖于一个变量x,我们把它的导数写成u的微小变化量除以x的微小变化量但波高u,不仅取决于x,也取决于时间t。在任何固定的时刻,我们可以求出du/dx,它告诉我们波的局部斜率。但我们也可以固定空间,让时间变化,它告诉我们一个质点上下跳动的速率。