经典证明:几乎所有有理数都是无理数的无理数次方
答案是肯定的,证明方法非常巧妙:考虑根号2的根号2次方。如果这个数是有理数,问题就已经解决了。如果这个数是无理数,那么就有:我们同样会得到一个无理数的无理数次方是有理数的例子。这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子...
x的x次方图像长啥样?刷新你对数学的认知!
π是一个无理数,根本不能写成两个整数的比,所以也不知道它到底是在开奇数次方根,还是在开偶次方根,我们甚至不知道它在实数范围内有没有意义。使用中学阶段的乘方知识,我们就只能理解到这里了,所以没办法画出y=xx在x<0时的图像。要继续深入下去,必须先来了解一下复数的各种形式。02复数的三角形式我们知道...
初中数学7-9年级教材知识要点分析,针对性的复习更有效!
平方根、立方根的概念、实数的定义;区分有理数和无理数理解无理数是无限不循环小数;实数运算的某些技巧掌握无理数的表现形式;理解平方根有两个七平面直角坐标系平面直角坐标系的概念;点的坐标表示;点的坐标变换点的坐标变换(平移、对称)坐标的表示;坐标变换八二元一次方程组用代入法,加减法解二元...
惊奇的简单证明:五种方法证明根号2是无理数
好了,现在3、5、7、11、13减去1后都不是8的倍数,它们的平方根一定不是有理数。在x=9时发生了一次例外,但9是一个平方数。而当x=17时这种证明方法没办法解释了,于是Theodorus就此打住。实际上,我们上面说的这么多,在古希腊当时的数学体系中是根本不可能出现的。毕达哥拉斯时代根本没有发展出代数这门学科来...
初二数学上册知识点总结|方向|三元|定理|方程组|实数_网易订阅
3、勾股定理的应用02第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0...
古希腊三大“不可解”的数学问题,最后一个既简单又复杂
由于2的三次方根是无理数,而尺规作图能够作出的线段长度均为有理数,所以“倍立方体”问题无法只用尺规作图解决(www.e993.com)2024年11月15日。这个证明被数学界普遍认可,可如果抛开尺规作图这个限制,那么要解决“倍立方体”问题其实并不难。柏拉图当时就有这么一个解法:“倍立方体问题”可以转化为另一个问题:即在a与2a之间,插入x、y两个数...
“万物皆数”的神秘教主——毕达哥拉斯
发现无理数信徒希帕索斯发现单位正方形对角线长根号2,不是有理数,引发了“第一次数学危机”。(甚至有学者认为“黄金分割”也是毕达哥拉斯学派发现的,有它们的正五角星徽标为证。这可能是一种臆测,因为,“第一次数学危机”因学派后来发现不可公度的无理数根号2而起,有悖于无理数“黄金比值”的提前知晓,也许,...