深度长文:数轴上随机砍一刀,砍到有理数的概率为0(建议收藏)
这里强调一点,概率为零,并不意味着一定不能取到有理数,概率和现实并不是完全等价的。你可以通俗理解为取到有理数的概率无穷小。为什么会这样?通俗理解就是,虽然实数等于有理数加上无理数,但有理数在实数面前就是个渣渣,不用管,完全可以忽略不计,所以结果就是:实数=无理数!因此在数轴上随机取一点,这个...
有理数和无理数到底哪个多?
0与1之间的实数是比自然数“更高一级的”无穷。康托尔将它的基数定义为c,意为英文“连续统”的首字母。这是1874年康托尔的重要发现:连续统的不可数性。他第一次找到了不可数的无穷。无限王国出现了等级,无穷与无穷并非全都相等:c>??????0我们知道实数是由有理数和无理数组成的,而有理数是可...
0.999999...8是一个什么数?有理数还是无理数?
你问0.9999…8是有理数还是无理数,相当于默认了它是实数。但它压根不是实数。0.9999…8只不过是你根据“实数写成十进制小数后具有的一些直观特征”杂糅出的符号。是你对实数定义尚不明确的情况下将错就错的产物。或许这个问题的源头,在于高中对实数的定义有漏洞。这个漏洞就是:实数(即数轴上的点对应的数)...
新课本有理数定义改了!一数学老师忍不了:分数形式是什么鬼
1/8是分数形式,也是有理数,那π/8是无理数,是不是“分数形式”?而“分数形式”这个概念教材上并没有提到。查了一下,没有找到官方的相关解释。从语文的角度看,我们认为π/2具有分数的外观,也就是具有分数的形式,但它不是分数,不是有理数。这就像一只直立行走的猴子,我们说它“像个人”,其实就是说它...
新版教材定义有理数的思考
旧教材有理数的定义:正整数、负整数、零、正分数、负分数统称有理数;进一步定义:正整数、零、负整数统称整数,正分数、负分数统称分数,这样有理数可以定义为:整数和分数统称有理数。由于整数可以用分母是1的分数表示,旧教材有理数的定义存在重复定义的嫌疑。
如何用基础数学证明0.999...=1?无穷带给人类的困惑和深层思考
答案是:无理数更多,而且比有理数多得多!有理数的数量在无理数面前简直就是渣渣(www.e993.com)2024年11月18日。可以这么通俗理解,有理数的数量是无穷,那么无理数的数量就是无穷的无穷。无穷也是有等级之分的,专业术语描述就是“势”!有理数和无理数在数轴上表示出来都是稠密的,都是紧挨在一起的,但无理数比有理数更稠密。
这种无理数中的无理数,让数学家直呼“根本停不下来”
比如整数就是正整数、零加负整数。有理数是能够表示成两个整数之比的数,其中包括整数、有限小数和无限循环小数。如果这个比的小数位永远除不尽且不重复,那它就是无理数。接着有理数和无理数共同构成实数,实数和虚数又组成复数。其中,对于有理数,今天我们一致认为是生活在公元前五世纪左右的希帕索斯发现的(...
追求完整的无理数:挑战手机计算器的极限
是无理数,可能也是无理数,但是就是整数了,而且它很“2”。再比如说,自然常数e和圆周率π都是无理数,但是只需要一个虚数的帮助,它们就可以变成整数:eiπ=-1;结果是个负整数,它还不够“2”,否则就会有e2iπ=1。当然,不是所有的努力都能够功德完满。自然常数e、圆周率π和163的平方根(...
初一数学:有理数知识点汇总,附赠计算大礼包!
2、有限小数和循环小数都可以化为分数,它们都是有理数.3、无限不循环小数叫做无理数.如:π、0.1010010001...数轴1、像这样规定了远点、正方向和单位长度的直线叫做数轴.2、在数坐上表示的两个数,右边的数总比左边的数大.3、正数都大于0,负数都小于0,正数大于负数....
无理数的“谋杀案”
由于当时人们觉得,整数和分数容易理解,并且在日常生活中经常应用,因此就把整数和分数合称“有理数”,而把希帕苏斯发现的新数起名叫“无理数”。小编有话说要想彻底理解一件事,就必须洞察它的本质。数学也一样,要想学好数学,我们就必须先理解“数学的本质”是什么?