为什么发现个无理数,就引发了数学危机
而希帕索斯(Hippasus)正是在研究毕达哥拉斯定理时发现:正方形对角线与边长之比等于根号2,这是一个无理数,无法表示成两个整数之比,它的发现更是直接引发了第一次数学危机。发现了一个无限不循环小数,承认它的存在不就行了,为什么就引发数学危机了呢?原来,毕达哥拉斯学派对“数”持有一种信仰,而这种信仰的基...
有理数和无理数到底哪个多?
这是自然数、整数、有理数和实数的关系。但你可能被这张图误导了。事实上,它们的对比关系是这样的,因为无理数比有理数多得多。有理数是整数与分数的统称,当然包括有限小数及循环小数,因为他们都能化为分数的形式。而无理数则是无限不循环小数,比如圆周率π和自然对数的底e。得出这个结论的是一位驰骋在...
3.14圆周率日:你知道无理数和有理数的区别吗?
因为有理数可以表示为两个数的比例,所以“有理”这个词恰如其分地反映了这个特性。而“无理数”(Irrationalnumbers)则是指那些不能用整数比例表示的数。这里的“无理”指的是“非比例”,并不是指缺乏逻辑或理性之意。有理数和无理数不仅是数学理论的重要组成部分,它们还在我们周围世界的结构中扮演着关键角...
新版教材定义有理数的思考
新版教材有理数的定义:可以写成分数形式的数统称有理数。严格来说,分数是小学定义的,分子、分母不涉及负数,这样的定义存在定义不完整的嫌疑;退一步说,中学学了负数,分数形式的分子、分母可以是负数,那么中学也学了无理数,分数形式分子、分母可以是无理数码,显然不能,新版教材的定义存在悖论的嫌疑。所以说,新教材...
深度长文:数轴上随机砍一刀,砍到有理数的概率为0(建议收藏)
实数=无理数!因此在数轴上随机取一点,这个点是无理数的概率为100%,有理数的概率为0。没错,无理数就是这么“霸道”,虽然实数是有理数和无理数之和,但事实上实数和无理数是一样多的,数学家们早就证明了这点,这里就不再证明了,证明过程我也看了,有些繁琐。因为两个集合,也就是实数集合和无理数集合...
从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3等(www.e993.com)2024年11月17日。因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。代数数vs.超越数:谁更高深?接下来,会遇到了两个稍微抽象的概念:代数数和超越数。
物理常数和数学常数有何区别?常数e是有理数还是无理数?
物理常数和数学常数有何区别?常数e是有理数还是无理数?特别声明本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问httprenzheng.thepaper。澎湃号·湃客相关推荐...
这种无理数中的无理数,让数学家直呼“根本停不下来”
事实上,解决化圆为方这个难题的关键,正是犹如之前数学家将实数分为有理数和无理数一样——需要将复数也分为两个集合。对于复数来说,其中许多都等于整系数多项式的根,数学家就把这个称作代数数。每个有理数都是代数数,一些无理数也是,例如??3;√2,还有即使是虚数i,它也算,因为它是x2+1的根。
有理数循环小数的奥秘:为什么一定会循环?
通过以上的解释,我们可以看到,有理数之所以都是循环小数,是因为它们可以表示成分数形式,而分数的无尽性质导致了小数的循环。同时,因为无理数不能表示为分数,所以它们的小数部分往往是毫无规律的重复,形成了非循环小数。有理数和循环小数之间有着密切的联系。了解这个联系,不仅可以让我们更好地理解数学中的小数概念,...
证明圆周率π是无理数很容易?人类花了2000年!
然后,兰伯特根据以上表达式证明:如果x是一个有理数,则tan(x)一定是无理数。最后,利用反证法:设π是有理数,则π/4也是有理数,于是按照上面的证明,tan(π/4)应该是无理数。但是tan(π/4)=1是一个有理数,发生矛盾。因此π是无理数,证明完毕。