傅一航老师《大数据挖掘工具:SPSS Statistics入门与提高》培训
??变量合并(添加变量)4、数据理解(异常数据处理)??取值范围限定??重复值处理??无效值/错误值处理??缺失值处理??离群值/极端值处理??数据质量评估5、数据准备:数据处理??数据筛选:数据抽样/选择(减少样本数量)??数据精简:数据分段/离散化(减少变量的取值个数)??...
《Nature》高分子材料成功独占鳌头,成为引爆学术界的核弹!
1.机器学习的定义、分类和发展历程。2.机器学习的基本概念,如数据、模型、训练、预测等。3.常见的机器学习算法,如神经网络、决策树、支持向量机等。2.机器学习在结构仿真中的应用概述1.机器学习在结构仿真中的应用背景和意义。2.应用领域介绍,包括结构设计优化、结构健康监测、材料性能预测等。3....
一口气学完回归算法、聚类算法、决策树、随机森林等十大算法
三、决策树决策树是一种基于树形结构的分类算法,通过递归地将数据集划分成若干个子集,最终形成一棵树。决策树能够直观地展示决策过程,并且易于理解和实现。在应用上,决策树常用于信用评分、疾病预测等领域。四、随机森林随机森林是一种集成学习算法,通过构建多棵决策树并对它们的预测结果进行投票,以提高分类和预测...
机器学习在复合材料领域到底能怎么用?【建议收藏】
(4)决策树回归(DTR)(5)随机森林(RF)实例:以纤维增强热塑性复合材料为例,使用物理基础的能量等效原理和机器学习算法来建立复合材料的力学性能模型,预测其应力应变曲线并进行模型比较6.机器学习模型评估(1)回归模型中的评价指标(MSE、RMSE、MAE和R2)(2)小提琴图绘制及评估实例:以PBO为例,比较不同模型的...
AI产品经理必知的100个专业术语
分类是将输入数据分配到预定义类别中的任务。常用算法包括逻辑回归、支持向量机等。14、聚类(Clustering)聚类是将数据点分成多个组的过程,使得组内成员比组间成员更相似。常用方法包括K均值聚类。15、决策树(DecisionTree)决策树是一种树形结构模型,用于分类或回归。每个内部节点表示一个属性上的测试,每个分支代...
数据分析的常用方法有哪些?从基础到高级一文读懂
而回归分析则用于预测和解释变量之间的关系,常用于建立预测模型(www.e993.com)2024年11月7日。实际应用在金融领域,通过回归分析可以建立股票价格与市场指标之间的关系模型,帮助投资者做出更明智的决策。7.聚类分析聚类分析将数据分成多个类别,每个类别内的数据具有较高的相似性。这种方法常用于无监督学习任务,如客户细分和市场分析。应用案例例如...
中国科技期刊卓越行动计划推介:《自动化学报》2024年50卷8期
夏恒,汤健,余文,乔俊飞.基于仿真机理和改进回归决策树的二噁英排放建模.自动化学报,2024,50(8):1601??1619XiaHeng,TangJian,YuWen,QiaoJun-Fei.Dioxinemissionconcentrationmodelingbasedonsimulationmechanismandimprovedlinearregressiondecisiontree.ActaAutomaticaSinica,...
全球海洋鱼类灭绝风险大幅上升!基于数据挖掘与模型的综合预测
该模型之所以被选用,是因为其集成了多个决策树,通过对每棵树的预测结果进行汇总,能够显著提高分类的准确性和稳定性。相比于其他算法,随机森林能有效减少过拟合现象,这在处理涉及大量变量和复杂数据的物种状态预测时尤为重要。通过对数据集的随机抽样和特征选择,RF模型能够提供更为可靠的濒危预测结果,有助于更准确地...
大数据和机器学习在验证上市公司财务报表真实性的应用研究
决策树模型决策树也是一类常见的机器学习算法。它的原理就是不断地构建节点来进行分类,通过训练集得到的树分类模型来进行预测。决策树的优势在于它具有很强的可解释性,分类的过程形成一个二叉树,可以看到相应的判断依据。另外,由于决策树输出的最终结果非常的直观,可以指导专家制定打分卡。
【公益案例展】四川农担x中电金信——大数据智能风控平台建设
策略管理:用于对策略管理要素的录入编辑和展示等,对策略库的分级分类管理,基于特定的业务场景,制定相应的策略模板。策略配置:支持对规则集、评分卡、决策表、决策树、决策流、表达式及机器学习等组件配置,以可视化的方式进行顺序、分支、并行等多种方式的执行流程编排,提供友好的操作界面,支持提供不同组件的组合配置,...