为什么发现个无理数,就引发了数学危机
而希帕索斯(Hippasus)正是在研究毕达哥拉斯定理时发现:正方形对角线与边长之比等于根号2,这是一个无理数,无法表示成两个整数之比,它的发现更是直接引发了第一次数学危机。发现了一个无限不循环小数,承认它的存在不就行了,为什么就引发数学危机了呢?原来,毕达哥拉斯学派对“数”持有一种信仰,而这种信仰的基...
有理数和无理数到底哪个多?
事实上,它们的对比关系是这样的,因为无理数比有理数多得多。有理数是整数与分数的统称,当然包括有限小数及循环小数,因为他们都能化为分数的形式。而无理数则是无限不循环小数,比如圆周率π和自然对数的底e。得出这个结论的是一位驰骋在无限王国里的勇士——康托尔。他提出:衡量无穷不能用传统的数字,而是要...
3.14圆周率日:你知道无理数和有理数的区别吗?
数轴上没有任何“缝隙”,没有任何位置是空的。有理数与无理数名字的由来术语“有理数”(Rationalnumbers)来源于拉丁语“ratio”,意味着比例。因为有理数可以表示为两个数的比例,所以“有理”这个词恰如其分地反映了这个特性。而“无理数”(Irrationalnumbers)则是指那些不能用整数比例表示的数。这里的“...
新版教材定义有理数的思考
新版教材有理数的定义:可以写成分数形式的数统称有理数。严格来说,分数是小学定义的,分子、分母不涉及负数,这样的定义存在定义不完整的嫌疑;退一步说,中学学了负数,分数形式的分子、分母可以是负数,那么中学也学了无理数,分数形式分子、分母可以是无理数码,显然不能,新版教材的定义存在悖论的嫌疑。所以说,新教材...
深度长文:数轴上随机砍一刀,砍到有理数的概率为0(建议收藏)
通俗理解就是,虽然实数等于有理数加上无理数,但有理数在实数面前就是个渣渣,不用管,完全可以忽略不计,所以结果就是:实数=无理数!因此在数轴上随机取一点,这个点是无理数的概率为100%,有理数的概率为0。没错,无理数就是这么“霸道”,虽然实数是有理数和无理数之和,但事实上实数和无理数是一样多...
初中数学:常考知识点总结(数与代数、方程与不等式、函数等)
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数(www.e993.com)2024年11月18日。■实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3.代数式...
初一数学:有理数知识点汇总,附赠计算大礼包!
1、我们把能写成分数形式的数叫做有理数.2、有限小数和循环小数都可以化为分数,它们都是有理数.3、无限不循环小数叫做无理数.如:π、0.1010010001...数轴1、像这样规定了远点、正方向和单位长度的直线叫做数轴.2、在数坐上表示的两个数,右边的数总比左边的数大....
上海中考历年自主招生真题题型之有理数,无理数与反证法
题型根式开方问题题型化简与求值题型有理数、无理数与反证法题型方程与方程组的求解题型方程与方程组的实际应用题型一次函数、反比例函数的性质题型函数的实际应用题型二次方程与韦达定理题型二次函数及其性质题型动点问题题型不等式与最值问题题型...
这种无理数中的无理数,让数学家直呼“根本停不下来”
事实上,解决化圆为方这个难题的关键,正是犹如之前数学家将实数分为有理数和无理数一样——需要将复数也分为两个集合。对于复数来说,其中许多都等于整系数多项式的根,数学家就把这个称作代数数。每个有理数都是代数数,一些无理数也是,例如??3;√2,还有即使是虚数i,它也算,因为它是x2+1的根。
证明圆周率π是无理数很容易?人类花了2000年!
我们可以把实数分成两类:有理数和无理数。有理数是那些可以写成两个整数的比的数,例如:1,2,1/3,0.25(=1/4),0.929292…(=92/99)...这些数字要么本身是整数,要么等于两个整数的比,所以都是有理数。有时候,我们又把有理数分为三种,分别是整数、有限小数和循环小数。有理数有无穷多个,但是我们其实...