美国高中女生因数学竞赛,发现勾股定理新证明,论文已发《美国数学...
平面上的直角三角形的两条直角边的长度(较短直角边为勾长、较长直角边为股长)的平方和等于斜边长(弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理可考的严谨数学证明,起源于欧几里得《几何原本》中卷一的命题47。如今,已经有了...
为什么要讲方程?走进不一样的数学|定理|余弦|直角|代数|三角学|...
“直角三角形中,两条直角边长度的平方之和,等于斜边长度的平方。a2+b2=c2”这是连小学生都知道的勾股定律,又叫毕达哥拉斯定理。它告诉我们什么?直角三角形的三个边之间有什么关系。它为什么重要?提供了几何和代数之间的重要联系,使我们能够根据坐标计算距离。它也催生出了三角学。它带来了什么?测绘、...
100年前,你能考上北大么?_澎湃号·湃客_澎湃新闻-The Paper
1.自二等边三角形底边上任意一点引他二边之平行线,所得平行四边形之周围有一定之长??2.直角三角形内切圆之直径与斜边之和等于他二边之和??(以上几何)北京大学1917年预科入学试题(数学·乙部)1.试分ab(x2-y2)+xy(a2-b2)为因数??2.有二位数字之数,其数等于各位数字之和之五倍;又此数加...
被数学选中的人:现代概率论之父柯尔莫哥洛夫
柯尔莫哥洛夫对“质数有无限多个”“等腰直角三角形的斜边不能用直角边的整数倍表示”等发现给予了最高的赞美之词。接下来,他详细叙述了注重实用性的古巴比伦数学同理想主义的古希腊数学经由中世纪的阿拉伯数学,最终发展为近代欧洲数学的历程,实在是令人兴致盎然。我从这段历史中了解到了很多史实。比如,我虽然知道...
131-五年级面积难题一等腰直角三角形斜边为16求它的面积
03:053172022年高考数学题,北京卷集合运算题。06:273162022年高考数学题,新高考1卷第5题,求概率。07:583152022年高考数学题,全国甲卷理科题23题,10分,证明不等式。02:253142022年高考数学题,新高考1卷的第2题,复数运算选择题。07:23313-2022年高考数学题,新高考2卷,第18题,满分12分。
斜边相等的两个直角三角形拼成四边形,如何求对角线长?
如图,在等腰直角三角形ABC中,∠BAC=90°,以BC为斜边在BC右侧作RT△BCD,∠BDC=90°,连接AD.若AB=5√2,CD=8,则AD=___.二、分析易求得AC=5√2,BC=10,BD=6,即四边形的四条边和一条对角线都已知,求另一条对角线的长.如果你听说过“托勒密定理”,这道题可以秒解;如果你只知道四点共圆,这道...
初中数学:与直角三角形相关的辅助线作法(实用技巧归纳)
2.1、有中点时,直接连接顶点与斜边中点(有时中点需要自己作出)2.2、有和斜边倍分关系的线段时例3、如图,在??ABCD中,∠ABC=75°,AF⊥BC于点F,AF交BD于点E,若DE=2AB,则∠AED的大小是()A.65°B.70°C.75°D.80°方法:碰到某条线段长是直角三角形斜边的一半,直接添加辅助线:斜边的中线。
有关“已知最短边,求与之互为勾股数的另两边”公式推论猜想
上初中后,我接触了“勾股定理”——对于任何一个直角三角形来说,两条直角边的平方和等于斜边的平方,即“勾的平方+股的平方=弦的平方”,并且教材上给出了第一组勾股数“3^2+4^2=5^2”,还有第二组勾股数“5^2+12^2=13^2”。当时我就觉得有趣,便想:还有哪些勾股数呢?已知一个数,怎么求其他两个数...
等边三角形ABC与圆交点弦BD=2√3,求圆的面积
直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(AD)??=BD·DC;(AB)??=BD·BC;(AC)??=CD·...
初中必会几何中点四大模型之四:斜边中点连中线(口诀突破)
直角三角形斜边上的中线等于斜边的一半.模型呈现:分析:在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD=1/2AB,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD和△BCD,该模型经常会与中位线定理一起综合应用。