正交分解与金字塔原理
一、正交分解的起源在古希腊,毕达哥拉斯学派发现了直角三角形三边之间的关系(a2+b2=c2),直角三角形的两条直线相互垂直,这可以看作是正交概念的早期体现,为正交分解奠定了基础。随着数学的发展,笛卡尔创立了解析几何,引入直角坐标系,使得几何图形和物理现象的分析可以通过代数方法进行。直角坐标系中的两个坐标轴相...
三角形的石头可以画什么,创意无限:用三角形石头绘制独特的艺术作品
1.稳固和坚定:三角形石头具有稳固和坚定的画笔特征,因为它的喜欢三个边角都相等,都是直角。这象征着在生活中保持稳定和坚定的西瓜态度,不被外界的构思诱惑和困难所动摇。2.平衡和和谐:三角形石头的朋友们三边相等,意味着它具有平衡和和谐的孩子们结构。它可以提醒我们在生活中寻求平衡,保持身心的找不到和谐,...
余弦定理、正弦定理、海伦公式
这三个可以说都是勾股定理引申出的定理,从小小的三角形出发,发挥了巨大的作用。我们先来画一个三角形,它分别有三个边,abc,如图所示。它同时也有三个角,1.2.3。现在咱们做个垂线,让AD垂直BC,垂点是D。好,△ABC被分成了两个直角三角形。于是,我们就可以有以下定理。这就是余弦定理,当我们知道了2个...
中国古代数学史上三大成就,你能看懂几个?
这些著作包括早期的《周髀算经》和《九章算术》,以及后来主要由刘徽以及其他数学家的著作衍生而来的一些教材。这些书涵盖了算术和数论、直角三角形、不规则图形的面积与体积的计算等方面的主题。《周髀算经》在博耶看来,10世纪至13世纪之间,尽管诸如造纸术以及航海罗盘等一些主要的技术创新都出现在这一时期,但是中国...
他因七巧板而爱上数学谜题,如今破解一个百年难题
劳埃德曾向公众发起智力挑战:一个木匠需要将一个主教冠形状(一个正方形切去1/4,即剔除一个等腰直角三角形后)的木板切割成几块(要求块数最小),才能经过再拼接,重组成一个小正方形?劳埃德后来给出了自己的答案,遗憾的是,他的构造并不正确。劳埃德认为分成适当的4小块,便已足够。图中人手中拿着的那个...
这一中国古代的数学瑰宝:到底厉害在哪
卷五商功是工程问题,涉及各种几何体的体积计算问题,其中提出三种基本几何体(即立方、堑堵和阳马)以作为求解任意几何体体积的基础(www.e993.com)2024年11月8日。所谓立方,就是正立方体;所谓堑堵,就是底面为等边直角三角形的三棱锥,两堑堵合成一立方;所谓阳马,就是底面为正方形,一棱与底垂直的四棱锥,三阳马合成一立方。
被数学选中的人:现代概率论之父柯尔莫哥洛夫
柯尔莫哥洛夫对“质数有无限多个”“等腰直角三角形的斜边不能用直角边的整数倍表示”等发现给予了最高的赞美之词。接下来,他详细叙述了注重实用性的古巴比伦数学同理想主义的古希腊数学经由中世纪的阿拉伯数学,最终发展为近代欧洲数学的历程,实在是令人兴致盎然。我从这段历史中了解到了很多史实。比如,我虽然知道...
席南华:基础数学的一些过去和现状
直角三角形三边的关系x2+y2=z2就是一个不定方程,它与圆方程类似。它有很多的整数解,勾三股四弦五就给出一组。一般的解很容易给出:X=a2-b2,Y=2ab,Z=a2+b2,其中a,b是任意整数。高次的情形就是方程xn+yn=zn,其中n是大于2的整数。1637年,费马在一本书内的边页写道,他有一个此方程无非平凡整数...
一个关于圆的游戏——π有多魔性?|刘徽|周长|圆周率|近似值|九章...
公元前3世纪,阿基米德在他的题为《圆的测量》的手稿中写道:任何圆的面积等于一个直角三角形的面积,该直角三角形的一条直角边等于圆的半径,另一条直角边等于圆的周长。我们可以想象一下,将一个圆切割成很多个楔形(三角形),每一个三角形的面积就是底与高之积的一半;每一个楔形的高都是圆的半径,而所有这些底...
2024电子台历中的数学之美
毕达哥拉斯树是一个由正方形组成的分形结构,它的生成基于毕达哥拉斯定理——在直角三角形中,直角边的平方和等于斜边的平方。2023_12_31_006579_$130这个分形以一种迭代的方式构建,随着迭代次数的增加,形成的图案越来越像一棵树,故称为毕达哥拉斯树。每一步的迭代都是对前一步的缩放与复制,形成自相似的分...